Обзор методов дефторирования воды.

1545496891187334396.jpg
Статья обзорная.
Введение.
Вода является основным источником потребления фтора.
Так согласно действующему
СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания»
, концентрация фтора (фторидов) в питьевой воде варьируется от 1,2 до 1,5 мг/л, что удовлетворяет требованиям Всемирной организации здравоохранения.
В России содержание фтора в питьевой воде находится в пределах СанПиН 1.2.3685-21, за исключением Уральского и Подмосковного регионов, где этот показатель ориентировочно составляет 4 мг/л.
Результаты многочисленных исследований свидетельствуют как об отрицательном, так и положительном влиянии фтора на организм человека. Попадая в организм животных и человека, фтор вызывает такие необратимые заболевания как зубной и скелетный флюороз, оказывает токсическое воздействие на сердечно-сосудистую и центральную нервную систему, а также на работу печени, почек, щитовидной железы. В то же время при использовании питьевой воды с низким содержанием фтора наблюдается заболевание кариесом.
Обеспечение водой с оптимальной концентрацией фтора единственный способ, которым можно защититься от негативного воздействия.
Методы дефторирования.
Дефторирование определяется как «понижение уровня фтора в питьевой воде». Во всем мире были опробованы различные методы и материалы для дефторирования воды. Можно выделить 4 основных метода.
1.- Сорбционный метод
2.- Ионообменный метод
3.- Метод осаждения
4.- Физико-электрохимический метод.
Деление довольно условно, поскольку один и тот же механизм извлечения фтора и реагенты, ответственные за данный процесс, могут относиться к разным методам.

Сорбционный метод
1545497070166172765.jpg
Метод основан на сорбционных процессах (физико-химических процессах поглощения жидкостей или растворенных в жидкости веществ твердыми телами или другими жидкостями).
Используются фтор-селективные материалы как природного, так и искусственного происхождения. Широкое применение в процессах дефторирования получили следующие материалы (Углеродные материалы, активированный глинозем, активированные угли, магний, трикальцийфосфат, кальцит, гидроксиапатит, активированный оксид алюминия).
Исследования, выполненные в МГСУ, показали, что процесс сорбции фтора свежеобразованным гидроксидом магния при рН>9,5 протекает быстро и интенсивно, практически не зависит от температуры и заканчивается за 8 -12 минут. Отличительной особенностью осадка гидроксида магния является чрезвычайная легкость. Поэтому скорость восходящего движения воды в осветлителях должна быть 0,2 - 0,3 мм/с.
Для ориентировочных расчетов расход солей магния на дефторирования воды осаждением гидроксида магния с использованием его сорбционной способности во взвешенном слое следует принимать равным 2 мг-экв/л на 1 мг удаляемого из воды фтор. Это актуально при содержании фтора в воде до 7 мг/л.
Удаление фтора из воды с помощью трикальцийфосфата основано на сорбции свежеобразованным трикальцийфосфатом, который связывает имеющийся в воде фтор в малорастворимое соединение-- [Са9(Р04)6Са]F2, выпадающее в осадок. Расход трикальцийфосфата на удаление 1 мг фтора составляет 23-30 мг. Этот процесс описывается следующей реакцией:
154549710812652005.jpg
Скорость восходящего потока воды в слое взвешенного осадка принимают 0,6 - 0,8 мм/с. Содержание фтора снижается с 5 мг/л до 1 мг/л, при расходе реагента = 30 мг на 1 мг удаленного фтора.

Ионообменный метод
Анионообменные смолы различной основности, способны удалять из воды фтор-ионы. Наибольшая ёмкость присуща анионитам, содержащим четвертичную аминогруппу.
Процесс обмена, вследствие более высокой электроотрицательности F-, протекает по реакции:

Matrix-NR3+Cl– + F– → Matrix-NR3+F– + Сl-

В начале процесса фильтрования через анионитовый фильтр практически весь фтор задерживается загрузкой, поэтому до 1,2 мг/л фильтрат разбавляют исходной водой. Повышение содержания фтора в фильтрате более ПДК свидетельствует об окончании цикла. Смолу отмывают пересыщенным раствором хлорида натрия или соляной кислотой.

Катионообменные смолы, предварительно обработанные раствором сульфата или оксихлорида алюминия, также могут быть использованы в качестве дефторирующих материалов.
Восстановление ионообменной способности фильтрующей загрузки проводится последовательной обработкой 1% раствором сульфата или 2-4 % раствором основного хлорида алюминия и водой. Для более эффективной регенерации рекомендована предварительная обработка катионита раствором соляной кислоты.
Несмотря на 90-95% удаление фтора, метод характеризуют: высокая себестоимость процесса из-за стоимости самого материала, его предобработки, регенерации, необходимости утилизации фтор обогащенных отходов; снижение эффективности очистки в присутствии конкурентно способных анионов; низкое рН очищенной воды и загрязнение её хлор-ионами. С учетом сказанного, использование ионообменных смол целесообразно при одновременном обессоливании и удалении избыточного фтора из воды.

Метод осаждения
При осаждении фтор удаляют в виде его малорастворимых основных солей.
Если содержание фтор-иона в исходной воде более 12-15 мг/л, то целесообразно провести предварительное известкование (не менее 1,5 мг оксида кальция на 1 мг фтора), позволяющее связать основную часть фтора во фторид кальция.
Низкая растворимость Са(ОН)2 обусловливает большой расход реагента, поэтому чаще применяют либо смесь извести с хорошо растворимым хлористым кальцием, либо только хлористым кальций.

Метод осаждения – коагуляция
Коагуляция обеспечивает извлечение фтора вновь сформированными осадками гидроксидов магния, алюминия, железа. Окончательная доочистка воды завершается на фильтрах с различной загрузкой.
Широкое применение для обесфторивания подземных вод Индии, содержащих до 30 мг/л фтора, получил разработанный на основании многолетних исследований метод Nalgonda. Эта технология включает ряд процессов: смешение воды с коагулянтом (солями алюминия), известью (содой) и белильной известью; седиментацию коагулированной взвеси не менее 2-4 ч и фильтрацию через песчаные фильтры. Выбор соли алюминия (хлорида или сульфата) зависит от содержания этих анионов в исходной воде, чтобы не допустить превышения их допустимых пределов. Расход коагулянта определяется содержанием фтор-иона и составляет в среднем 30 мг Al2O3 на 1мг фтора. Добавление извести (или соды) гарантирует адекватную щелочность для эффективного протекания гидролиза коагулянта и предотвращения роста содержания остаточного алюминия в питьевой воде.
Для обеспечения населения небольших сельских общин в Индии качественной питьевой водой разработан метод IISc, который состоит в обработке воды окисью магния (в виде разбуренной породы), гидроксидом кальция и бисульфатом натрия.
Недостатки метода осаждения – неприменимость при высоком (более 10 мг/л) содержании фторидов, что требует большой дозы коагулянта и приводит к резкому повышению солесодержания в виде сульфат- или хлорид – ионов; опасность повышения по той же причине растворенного алюминия в питьевой воде, что недопустимо с учетом его нейрогенного воздействия на организм человека; необходимость регулярного анализа очищаемой воды, параметры которой изменяются в широких пределах вследствие сезонных колебаний, и точного дозирования реагентов; строгий контроль рН и щелочности питьевой воды (стабилизационная обработка).
Использование данного метода требует применения следующей стадии обработки, а именно, фильтрования через различные сорбенты.

Физико-электрохимический метод
Установки обратного осмоса недавно начали использовать для дефторирования воды. Есть работы, где показан результат очистки воды с изначальным содержанием фтор-ионов = 20 мг/л и после очистки = 0,5 мг/л.
1545497219197534137.jpg
Исследования, проведенные НИИ КВОВ АКХ, показали, что при фильтровании фтор - содержащей воды через полупроницаемые мембраны при давлениях выше осмотических происходит извлечение фтор-ионов из воды.

Электрокоагуляционное дефторирование
Электрокоагуляционное дефторирование природных вод, что объясняется возможностью удаления фтора без применения химических реагентов, вместе с которыми в воду вводится значительное количество дополнительных солей, а также высокая активность электролитически, полученного гидроксида алюминия.
В качестве растворимых анодов применяют алюминий и дюралюминий, для экономии энергозатрат варьируют токовой нагрузкой и расстоянием между электродами, электролиз ведут при постоянном и переменном токе.
При электролизе в воду с анода переходят катионы алюминия, которые и адсорбируют фтор. Растворение 1 г металлического алюминия эквивалентно введению 6,35 г сернокислого алюминия.
Теоретический расход электроэнергии на получение 1 г алюминия должен составлять около 12 Вт-ч. Фактический расход электроэнергии значительно выше из-за тепловых потерь, дополнительного сопротивления оксидной пленки, образующейся на поверхности электродов, и ряда других причин.
Основным фактором, влияющим на сорбционную способность электролитически полученного гидроксида алюминия, является концентрация ионов водорода. В слабо кислой среде фтор сорбируется получаемым осадком значительно лучше, чем в нейтральной и щелочной. Оптимальное значение рН обрабатываемой воды находится в пределах 6,4 - 6,6. Повышение или понижение активной реакции среды приводит к снижению эффективности дефторирования воды. Причиной этого, как и в случае реагентной обработки воды, является конкуренция гидроксил-ионов при высоких значениях рН и растворение хлопьевидного осадка в кислой среде. Расход металлического алюминия при предварительном подкислении воды составил около. 12 г на каждый 1 г удаляемого фтора, расход кислоты = 0,2 л/м3.
В состав установки по дефторированию входит емкость для соляной кислоты, насос-дозатор, электрокоагулятор, фильтр, центробежный насос и контрольно-измерительная аппаратура.

Заключение.
Таким образом, анализ известных в настоящее время методов обесфторивания воды свидетельствует о том, что ни один из них не является универсальным. В то же время любой из них может обеспечить удаление фтор-ионов из воды до требуемой кондиции, причём эффективность каждого метода будет определяться социально-географическими и экологическими условиями, присущими каждой стране, и её техническими и экономическими возможностями.
Основными критериями, которыми следует руководствоваться при выборе метода обесфторивания, являются: стоимость и эффективность технологического процесса; качество конечного продукта – питьевой воды (по всем показателям, а не только по остаточному содержанию фтор-ионов).
Определение этих характеристик возможно только в процессе апробации метода обесфторивания на фактической воде конкретного источника.


ЛИТЕРАТУРА:
1.- Фрог Б. Н., Левченко А. П., Водоподготовка: Учебное пособие для вузов. М. Издательство МГУ, 1996 г. 680 с.
2.- piddennavar Renuka, krishnappa Pushpanjali,: The International Journal Of Engineering And Science (Ijes) Volume -2, Issue- 3, Pages 86-94, 2013.
3.- Шабарин А.А., Водяков В.Н., Котин А.В., Кувшинова О.А., Матюшкина Ю.И., Очистка питьевой воды от фторидов методом обратного осмоса: Вестник Мордовского Университета, Том№ 28, Номер № 1, Год 2018, Страницы: 36-47
4.- Всемирная организация здравоохранения: Руководство по качеству питьевой воды, 3-е издание: Том 1, 2008
5.- Fawell J., Bailey K., Chilton J. et al. Fluoride in Drinking-water – Geneva: WHO, 2006.
6.- Meenakshi, Maheshwari R.C. Fluoride in drinking water and its removal // J. of HazardousMaterials. – 2006. – 137, №1. – P 456-463.
7.- Золотова Е.Ф., Асс Г.Ю. Очистка воды от железа, марганца, фтора и сероводорода. М: Стройиздат, 1975.
8.- Anasuya A., Bapurao S., Paranjape PK. Fluoride and silicon intake in normal and endemic fluorotic areas // J. of Trace Elements in Medicine and Biology. – 1996. – 10. – P 149-155.
9.- Dinesh C. Fluoride and human health-cause for concern // Ind. J. Environ. Protec. – 1998. – 19, № 2. – P 81-89.
10.- Nagendra Rao C.R. Fluoride and environment // Proceedings of the Third International Conference on Environment and Health, Chennai, India, 15-17 December, 2003. – P 386 – 399.
11.- Qafas Z., Kacemi K.E., Edelani M.C. Study of the removal of fluoride from phosphoric acid solutions by precipitation of Na2SiF6 with Na2CO3 // Sci. Lett. – 2002. – 3, № 3. – P 1-11.
12.- Мамченко А.В., Герасименко Н.Г., Дешко И.И., Пахарь Т.А.: Институт коллоидной химии и химии воды НАН Украины, г. Киев «Фтор в питьевой воде и методы его удаления» Сентябрь 2018
13.- Николадзе ГИ. Улучшение качества подземных вод. М: Стройиздат, 1987.- 240 с.
14.- Дебелый П., Новоженов С. Безреагентное обесфторивание подземных вод с помощью фильтрующей среды КДМ // Водоочистка. – 2005.- № 5. – С. 53 – 54.
15.- Самченко З.А., Гороновский И.Т, Вахнин И.Г Обесфторивание воды сульфостирольным Al-катионитом КУ-2 // Химия и технология воды. – 1985. – 7, №2. С. 77- 79.